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Abstract

The supersonic flow past a thin straight circular cylinder is investigated. The asso-
ciated boundary layer flow (i.e. the velocity and temperature field) is computed; the
asymptotic, far downstream solution is obtained, and compared with the full numerical
results.

The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is
also studied. A so called “doubly generalized” inflexion condition is derived, which is
a condition for the existence of so called “subsonic” neutral modes. The eigenvalue
problem (for the complex wavespeed) is computed for two freestream Mach numbers
(2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of
the flow. The first unstable inviscid mode is seen to rapidly disappear as curvature
is introduced, whilst the second (and generally the most important) mode suffers a
substantially reduced amplification rate.

1This research was suppported by the National Aeronautics and Space Administration under NASA
Contracts No. NAS1-18605 and NAS1-18107 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665



1. Introduction

The current and proposed development of high speed flight vehicles
has rekindled the general research effort into supersonic and hypersonic
flows. One of the key areas of aerodynamic study is that of boundary
layer stability/transition to turbulence. In the case of compressible
flow, Tollmien-Schlichting, Gortler and inviscid instabilities are all
possible.

The problem of the stability of axisymmetric flows is of obvious
relevance to flight vehicles, for example to the flow over fuselages
and engine cowlings. In a recent paper Duck and Hall (1988a) used
triple-deck theory to consider the linear (and weakly non-linear)
viscous instability of an ax{symmetric boundary layer in a supersonic
flow to axisymmetric instabilities. It was found that viscous modes
can exist in pairs (i.e. for a given body radius, there exist two neutral
wavenumbers with two corresponding wavespeeds), and that at a given Mach
number such modes occur only for a body radius less than a critical
value (dependent on Mach number).

In a second paper, Duck and Hall (1988b) went on to consider
non-axisymmetric disturbances. These were generally found to be more
important than axisymmetric viscous modes (possessing generally larger
growth rates and occuring at larger body radii), whilst again it was found
that neutral modes existed in pairs at body radii less than‘some
critical value (dependent on the Mach number and azimuthal wavenumber).

However it fs generally found in the case of supersonic flows that
inviscid disturbances are more important than viscous disturbances
(this is in contrast to incompressible flows where viscous
instabilities are generally dominant).

One of the earliest attempts to study inviscid compressible stability

was made by Kuchemann (1938); in this study, the temperature gradient
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and the curvature of velocity profile (together with the effects of
viscosity) were both neglected, assumptions which it turns out cannot
be properly justified. The work that provided a key to understanding
this type of instabjlity was Lees and Lin (1946), in which a rational
asymptotic approximation was developed, analogous to the incompressible
work of Lin (1945). It was found that the quantity

3 [x Bu*
ay* ay*

surface, y* the coordinate normal to the surface, and p* the fluid

(where u* denotes the velocity tangential to the

density) plays a key role, very similar to that of 82u*/8y*2 in
incompressible theory, and as such may lead to a "generalised inflexion
point” type of instability if this quantity is zero. It was shown that

unlike incompressible Blasius type layers, the flat plate compressible

boundary layer can be unstable to purely inviscid modes. This
(two-dimensional) work on compressible boundary layer was then extended
to three dimensions by Reshotko (1962).

However the major differences between incompressible and
compressible theory were not fully uncovered until extensive numerical
calculations were possible. The first of these, by Brown (1962), was
followed by a series of computational studies by Mack (1963, 1964,
1965a,b, 1969, 1984, 1987). A further important difference with
incompressible results was then revealed, namely that cémpressible
theory predicts an infinite sequence of additional modes. These are
referred to as higher modes, and are of great importance for boundary
layers since it is the first of these (the so-called second mode) that
is then most unstable according to inviscid theory.

In the light of thfs numerical work, the prediction of Lees (1947),
that cooling the wall acts to stabilize the boundary layer, turns out

to be a little misleading (cooling can actually destabilise the flow,
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according to Mack 1969, 1984, 1987); In this case, although
the "generalised inflexion point” of the profile may disappear with
cooling, these additional modes persist.

In the light of this work on planar boundary layers, we now turn
to consider the inviscid axisymmetric stability of the boundary layer
on a straight circular cylinder, the generators of the cylinder lying
parallel to the flow. 1In particular we wish to investigate the effect
curvature plays on the stability of the flow, and so we postulate
that (generally) the radius of the body is of the same order of
thickness as the boundary layer. Consistent with this we choose to
prescribe planar conditions at the "leading edge" of the cylinder,
although the techniques to be described could be readily
extended to other leading edge conditions (e.g. "rounded tips"). This
approach may be fully justified {f we restrict our attention to thin

cylinders.




2. Equations of motfon/state

We take the z* axis to coincide with the axis of the cylinder,
r* the radial coordinate, and 6 the azimuthal angle. a* |Is
the radius of the cylinder, which is taken to be independent of both
z*¥ and 6. The velocity vector is taken to be x* - (v:, v;, v;) in
the (r*, 08, z*) directions respectively, and T* to be the
temperature of the fluid. Throughout we assume the flow to be completely
independent of 6, and it is also assumed that the azimuthal velocity

component v, = 0., The (full) equations (Iin the cylindrical system)

of continuity, momentum and energy, are, respectively (see Thompson 1972)

* &
ap* a * * le 3 * *
L= U = @b
* Dv: op* 0 zr* r* 9 Zr* z* 1
T TRt e g T (D)
*
P*E-—?Lt+azz*r*+azz*z*+Zz*r*, (2.3)
De* oz* or* oz* r*
*
D * Dp 1 9 * % OT* 9 . % OT*
P* E:; (cp ) - —:*- ™~ + ;* 5:; (K™ r 5;:;) + 5;; (K 5;;)_ (2.4)

Here p* denotes the density of the fluld, p* the pressure, p

the specific heat at constant pressure, K* the coefficient of heat

conductivity. The Eulerian operator is defined as

2 v Sy, (2.5)

and the viscous stress components (assuming Newtonian flow) are
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The dispersion function TI™* 1is defined to be
? 4 * 2 2 2 2 * * *
™ - 2y [Dr*r* + Dyt 2 Dz*r*] £3OF M (L),
(2.9
where the rate-of-deformation tensors are
av;
D -— (2.10)
r*r*  or*
*
D -3 (2.11)
z*z* 2*’ '
1 av: av;
Dr*z*-i [-——ZT*'—;-—*-] (212)

p* denotes the first coefficient of viscosity, and A\* the second

coefficient of viscosity ( = 1.5 x p*).
We now go on to assume a perfect gas equation of state, namely

p* = p* RY T, (2.13)

(where R* is the gas constant). We also assume that u* is



solely a functfon of T* (to be prescribed later).

The surface of the cylinder lies along r* = a*, z* > 0, along
which we assume X* = 0. We also assume the surface of the cylinder

is insulated, and so

oT*
*
or™ ! _a*

- 0. (2.14)
Conditions at z = 0 must be specified. For the purposes of this

paper, we assume that the boundary layer at z = 0 has zero thickness

(implying planar conditions prevail); a similar assumption was made

by Seban and Bond (1951) and their comments regarding this assumption

are valid here. Further, since the cylinder is taken to be straight

and thin, to leading order the far field is taken to be uniform, with

velocity vector (0, O, U:). The problem is now finally closed, and In

the following section we go on to consfider the basic boundary layer flow

on the surface of the cylinder, obtained by an approximation of the

governing equations detailed above.



3. The basic flow.
3.1 The boundary laver approximation

Here we consider the steady boundary layer approximation for
the basic flow, derived from equatfons (1.1) - (1.4). A fundamental
(and i{mportant) component of this paper is the inclusion of curvature
terms in the governing equations; we achieve this by generally taking
the body radius to be of the same order as the boundary layer thickness
(a similar approach was adopted by, for example, Seban and Bond 1951,
Glauert and nghth{ll 1955, Stewartson 1955, Bush 1976 and Duck and
Bodonyi 1986).

With the formation of a thin boundary layer, (comparable in thickness

to the body radius) we expect the following classical assumptions to hold

d d

—_— D> —— 3.1

or* oz* ¢ )
and

V3* >> Vl*, (3.2)

(these orders will be made more precise shortly). Equations

(1.1)-(1.4) then reduce to

**

2 tiH + e 2t -0, (3.3)

r

op*

o - 0, (3.4)

* [ *
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*
K*r* §I—]. (3.6)



The last of these equations assumes cp to be a constant. Notice that
the pressure {s everywhere uniform on account of (3.4), together with
our {inherent assumption that the body radius is of the same order as
the boundary layer thickness, {.e. very thin.

One important consequence of (3.4) is that the equation of state may

be written In the following form

p*T* - pm*Tm*y (3.7)

where subscript « denotes freestream conditions.

It is now convenient to introduce non-dimensional quantities

(vi.,v3,r,z,T,p,p)

= (Re v1*/U*,v3*/U* rr/a, Re-12%/a, TH/T%, p*/pe™ w*/p®),  (3.8)
where Re is the Reynolds number, based on body radius a*, namely
* ko
Re = Vo 2 Pn ' (3.9)
po*

which must be assumed large if the assumptions (3.1) and (3.2) are to
be valid.

Equations (3.3) - (3.6) may then be written in the following

non-dimensional form

R E ) -
% _ o, (3.11)

A= IV R R PR T (3.12)

"=

=t ) =-j
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2
v1 g} + vy g; - #T(V-I)Mmz [g;il + ]' 3.13)



Here ¢ 1Is the Prandtl number, namely

o - EESH, (3.14)

which in this paper we shall assume to be a constant; vy |{s the ratio

of specific heats, and M, the Mach number, namely

My = Ug*/(YR*T*) . (3.15)

The boundary conditions are

a7
| ,~%

r=1

vi=v3=0 on r =1,

vy » 1
as r - o, (3.16)
T -1

To close the problem formally, we require a relationship linking
u to T. Here we take the simplest form, namely the linear Chapman

law (Stewartson 1964),

p=T, (3.17)

although, here, conceptually, there would be no difficulty incorporating

a more complex viscosity/temperature law.

3.2 Numerical solution

As z 32 0 we specify (i) the solution approaches planar conditions
(Stewartson 1964) and so we expect the solution to become singular.
This latter condition renders the problem in its present form

inappropriate for numerical treatment. Instead we write '



~

vy = t-1 vi (0, 8),
vy = ;3 n. 5,

T =T (n,%),

with ¢ = z3},

n = (r-1)/%.

(3.18)

(3.19a)

(3.19b)

The "hatted" functions are now expected to be completely regular

as § - 0, approaching their planar counterparts.

(3.12), (3.13) then become, respectively

~ A PPN A~

T Vipg - V1 T.q - 4T vipg + } {Tvyy

~
-

S g fTv
+ 3 My V3 - $tvy Ty + T:;% - 0,

A A A A A A

V1Vig - $ vy Vig + 3 Ivyvap

~

_A2 + ? "3TA
T [;3nn i) * T ay Van

P, A -
Vi Ty -5 1 v3 Ty +1§ £ Tp vz = T2(y-1)Me2(v3y) 2
. T2 - 12 -

2 T_ T<¢
T2+ &= Ty + ooy Tne

Qi=i>

subject to

Equations (3.10),

(3.20)

(3.21)

(3.22)



~

T" =0 on =0,

~ ~

vi =v3 =0 ongn=20,
T+>1 as 79 o

vi=>1l as 79 o, (3.23)

It is possible to define a streamfunction which would ensure
the contfnuity equation (3.20) is always satisfied; however in this
case, in addition to the order of the momentum equation being increased,
the coefficients of the equations become considerably more complicated.
Further, it does not appear possible to introduce a Howarth-Dorodnitsyn
(Stewartson 1951, Moore 1951) like transformation which in the planar
case considerably simplifies the governing equations. For this reason
it was decided to seek a numerical solutfion to ;1, ;3 and ’} directly.

Notice setting ¢ = O reduces the system (3.20) - (3.23) to the planar

problem, namely the ordinary-differential system

T Vig - V1 Tﬂ - Qq'T Vig + 3 ﬂTqV3 -0, (3.24)
V] Vipy - % nv3 Vip = 12 Vigg * T TnV3n, (3.25)
. 7 ) R 2 2 P 2 ,T 2 T 2 26
V1 Tﬂ -3 V3 T" = Te (y-1)M, (V3n) + . Tﬂﬂ +t= (Tﬂ) , (3.26)

(again subject to (3.23)).

The variables

(3.27)




were Introduced, and the system (3.24) - (3.26) together with (3.27)
were written as a system of first order ordinary differential equations,
which were then approximated by second-order finfte differences. The
truncated system was then solved by means of Newton iteration. At each
fteration level, the algebraic system was of block-diagonal form, with
each block comprising 10x5 elements.

Once the above solution was obtained, the system (3.20) - (3.23)
was treated in much the same way, with a Crank-Nicolson approximation
being used to approximate < derfvatives (again the problem was treated
as a system of first order equations in 15). In this way, the solution
was extended forwards in ¢.

Fig. la shows the distribution of {-1 ;3ﬂ (n=0) with ¢, and
Fig. 1b the corresponding distribution of }(n-O). These results
are for My = 2.8, with fluid constants o = 0.72, y = 1.4, The
§'1;3n (n=0) distribution is singular in the planar limit as | » O,
and then appears to (slowly) fall continuously as { increases. The
}(n-O) distribution declines slightly from its planar value at {=0.

Results for M, = 3.8 (same fluid constants as above) are shown
in Fig. 2a (f‘1;3(n-0) distribution) and Fig. 2b (}(n-O)
distribution); these suggest the same basic characteristics as the
lower Mach number results.

The limit as § 3 ® 1is of some interest. Although, as indicated
earlier, the incompressible case in this limit is well documented,
the particular detafls for the compressible case do not appear to
have been described, although Stewartson (1964) speculates that a
similar approach to the incompressible case Is necessary. 1In the

following sub-section we show this is indeed the case.




3.3 The far downstream f]low

We find 1t convenient to reconsider the system (3.10) - (3.13)
(together with (3.17)) when studying the limit of z 4 . The
incompressible work of Glauert and Lighth{ll (1955), Stewartson (1955)
and Bush (1976) suggests that two radial lengthscales are i{mportant
in this limit, namely r = 0(1) and r = 0(25). Following these earlfier

works, we find it convenient to define the parameter

€ = (% logz)‘l, (3.28)
~ (log -1

which is necessarily small as 2z 9 o.
Guided partly by the incompressible case, we expect the solution

for r = 0(1) to take the following form

vi = 0(l/p), (3.29a)
vy = v3(r,$) + o(l/p), (3.29b)
T = To(r,t) + 0(1/p), (3.29¢)

where "barred" quantities are expected to be generally order one.
Subsitution of (3.29) into (3.10) - (3.13) 1immediately reveals the

result (neglecting 0(1/§) terms)

5 ['fo '3%3] -0 -39
and
AR
= v
To(y-DM.2e? [3?3] Y For [' " zrr‘Q] -0 G-3D

Integrating (3.30) yields
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= Ov K
To g2 = ;. (3.32)

where K 1is independent of r. Substitutfon of (3.32) into (3.31) yields

r

R _ “1)R2M 262
fo & [rTo g}Q] » DK MS"e%0 (3.33)

To facilitate the solution to (3.33) we write

r = Inr, (3.34)
and so
To O |To 20| + R20M,2(y-1)¢2 = 0. (3.35)
or or

This equation is further simplified by the use of a second transformation

R - l gﬁ , (3.36)
To
giving
23 .
910 4 R2M,20(4-1)e2 = 0. (3.37)
9R2
Consequent ly
_ Q2 - -
Tg - - ;— M 20 (y-1) €2R2+eAgR+Bg, (3.38)

where Ag and By are independent of R.

Before proceding further with this solution, we consider next the
outer solution where n = 0(1). Guided by the above, and also again the
corresponding incompressible results, we expect the solution to develop

as



vy =1+ evy(n) + 0(e2),

T =1+ eTy(q) + 0(e?),

vy = evi(m) + 0(e?), (3.39)
where we have written,
n
- d
n = (3.40)
0

and also we have implemented freestream conditions on v3 and T.

If Tg(r,!) 1is to match correctly to (3.39), we must have (to

leading order)
Ag + By - %22 Mol (y-1Y0 = 1, (3.41)

(it is now clear that although the first term on the right-hand-side
of (3.38) is notionally O(cz), its Inclusion is essential for a
correct matching process, as is the second term). Note that we have used

the result
R~r~Inr as r - o. (3.42)

The matching of ;3(r,f) with the outer solution is achieved by setting

K=-1.

The O0(e) corrections to (3.39) are then given by

-3sJdn
dny, (3.43)

3
E- g N4

V() - ]

o

and

T = (Ao -o(y-DM2] | dn. (3.44)



Both 7 and R méy be regarded as forms of "optimal coordinates”, as
their use is essential for the correct matching of solutions.

To complete the problem, we now require to specify conditions on
r=1. In the insulated wall case, to which the bulk of this paper is

devoted, we require

oT
! -0, (3.45)
r=1
and so Ag - O, (3.46)
and this implies that
To|,p = 1 + 5 (v-DMZ+0Ce), (3.47)
which implies
3 -— + 0Ce), (3.48)
r=1 1+ 3(y-1)M?

(on account of (3.32)).

These asymptotic results are indicated as broken lines on
Figs. 1 and 2 for comparison with the full numerical results; the
agreement fs satisfactorily given the relative "largeness" of the
small parameter €.

If on the other hand the surface of the cylinder is heated or

cooled, f.e. T rel fs specified (to be T, say), then we must have

By = Ty, (3.49)
and so to leading order

Ao = 1+ 0(y-1IM2-T,, (3.50)



giving

or
ar

1
- -;—w [1 +5 o(y-DIMZ-T] + 0(e2),

r=1

together with,

(3.51)

(3.52)

In the following section we turn our attention to the inviscid

instability of flows corresponding to the insulated wall class.




4. Inviscid disturbances
4,1 Disturbance equations

We now seek to determine the effect of a small amplitude disturbance
on the basic flow described in the previous section, to determine
whether growth/instability can occur. We impose a disturbance whose
wavelength is generally comparable to that of the boundary layer
thickness and therefore also of the body radius (O(a*)), fn which
case the parallel flow approximation can be fully justified; this
implies the disturbance equations are all inviscid.

Specifically, at a fixed z station, we write

vi* - Ut V() el®(Z-et) (4.1)
va* = U [wo(r) " a;(r>e’&(z'°‘)], (4.2)
T - Tm*[To(r) + 5T(r) e'&(z’“)], (4.3)
o* = o [fa%;7 + 5p(r) e'a(z'°‘)]. (6.4)
P* = P R*T* [1 + 5p(r)e‘&(z'°‘)], (4.5)

where & |is some small (disturbance amplitude) parameter,

t = (Ug*/a*)e*,

Z - z*/a*,

and so the Z = 0(1) scale is very much shorter than the 2z = 0(1)




scale, o 1s the non-dimensional spatial wavenumber, and c¢ the

the non-dimensional wavespeed, and

wo(r) = v3(r,z),

To(r) = }(r,z), (4.6)

where v3 and T are as definhed In Section 3.
Substituting (4.1) - (4.4) into (1.1) - (1.4), (1.13), taking
the 0(3) terms with the highest order in R ylelds the following

disturbance equations

~ fw 1 -~ 1 - ~d 1
-{ cp + To + Tor v + o ve + lwgp + v Ir (TB) -0, (4.7)
Jde gy dwgw  owwor 1P (4.8)
To To To M2
_ falc T4 asz; - :l_ P (4.9)
To Tp e 2'F ‘
1 fcT T+V -1 P p 10
76 -fcT + iwg T + vTg,]| + 5 fep - fwgp| = O, (4.10)

together with the disturbance equation of state
-Tgp + T (6.11)
p 0oP Ty’ .

After some algebra the system reduces to the following two equations



- - - 2
~ Vo worv _ ip TD—Mm(wQ-c)2
ve + - wofc 7MZV [ ¥0-€ ], (4.12)
-9 ) - -
la éWQ ©) vV _._ _Pr_ (4.13)
0 7Mm2

It was shown In the previous section that the appropriate scale as
z30 is n (see (3.19b)) rather than r. Consequently we find f{t
convenient to use 1n however, rather than r, and also to introduce

a scaled radial velocity component ¢, and wavenumber o by

veitp, a=aoff

and so

t _wope _ _ip Tg-Mg2 (wg-c)?
ot T P T wone T g [ T ' (4-14)
2,0 -
fas (wg-c) o - Pp (4.15)
To M2

Equa:ions (4.14) and (4.15) may be combined to give

¢
(wp-c) (py + P) - Wop @ 2
I 2 - T (wp-c)e. (4.16)
To - MuZ [wo-c 2 0

Q.lO.
=

This equation is very similar to the well-known planar inviscid
equation (Lees and Lin 1946, Reshotko 1962, Mack 1984, for example),
except for the Inclusion of the single curvature term, on the

left-hand-side of the equation; notice that allowing { 90 retrieves



the planar result.

On n =0, we require

p(m=0) =0 (4.17)

(the impermeability condition). The second condition is that
¢ 1is bounded as % 5 . This fs achieved by taking the

73 limit of (4.16), {.e.

2
oy + {%y; - zféffyz - o2[1-Mx2(1-¢)2]p, (4.18)

giving
0 ~ vw Kil2al1-M2(1-c)2]3(3 + M), (4.19)

where K,(z) denotes the modified Bessel function of order n,
argument 2z, and the sign is chosen such that the real part of the
argument {s positive to ensure boundedness as 7 3 «; ¢, is a

constant. Equatfon (4.19) also leads to

paMo? for (1-c)Kol tal1-M2(1-e)2]4(} + )

p~ 3 (4.20)

[1-M2(1-¢)2]

The eigenvalue problem (for the temporal case as considered here)



i{s then, for a given a, to find c subject to boundedness as 15 - o,
and such that the impermeability condition (4.17) is satisf{ed.

Before carrying out a detalled rumerical study of this above
eigenvalue problem, we turn to study an important sufficiency condition

relating to the existence of certain unstable eigensolutions.



5. he_doubl eneraljsed jon_condit
In the case of compressible planar flows, the existence of the

so called generalised inflexion point, where (in our notation)

LI 07}
e

is of great importance, as shown originally by Lees and Lin (1946) and
confirmed by Reshotko (1962), Mack (1984, 1987) for example.
If condition (5.1) is satsified at some point 1#;, then there

exists a neutral solution, with wavespeed c, such that
c = wg(ny), (5.2)

provided Tg - Mp2 (wg-¢)2 > 0, (5.3)
for all 1.
This is a sufficient condition for the existence of a so called

neutral subsonic disturbance, i.e. for which
1 - I/NQ <c<1+ 1y, (5.4)

using the terminology described by Mack (1984), where sonic disturbances

have

c = 1tlyy , (5.5)
and supersonic disturbances have

c<1- 1/"«, (5.6)

The condition (5.1) has a further important repurcussion, namely that

a sufficient condition for the existence of an amplified disturbance

is that

d [¥gn] -0 (5.7)

Sl
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at some n > ny , where %y s the point at which

wo(m) =1 - 1/ . (5.8)

The question then arises, what i{s the effect of curvature on these
important conditions? We address this question next. We take equation
(4.16) as our starting point, and follow the general approach adopted
in the past to tackle inflexional instabiliities arising in planar
compressible flows (eg. Mack 1984), although here the situation is
more complicated because of the inclusfon of curvature terms.

Taking equation (4.16), dividing through by wg-c, and multiplying

by ¢* (where an asterisk denotes a complex conjugate) we obtain

1
(wg-c) (pr + = ¢r) - W0 &2
L

® d_ r -
wg-c dr X To 44 .9
where r =1 + {9, (5.10)
and x = To ~ Mo2(wg-¢)2. (5.11)
If we now subtract the complex conjugate of (5.9) from (5.9) we
obtain
1 * * *
p* d_ (wo-c) (pp + T ¥) - wory _ d (wp-c™) (¢r M )'WOrw*
wg-c dr X wo-c~ dr *
(5.12)
After some algebra, this may be written as follows
1 * 1
or t - or t -
x d r _ d r - * 1 g_ worl _ 1 E_ W
¥ ar X ¥ ar X ' 1sp-c dr [xr wg-c® dr }Qi



We now focus attention on the limit of the neutral state, {.e. {f

c = cp + lcy

then c¢; - 0. (5.14)
We may write x* = x 1in this limit without any difficulty

(assuming the wave is not given by efther of (5.5), which we shall

see is outsfde of the scope of the following, anyway). However we exert

some care in the treatment of the right hand-side of equation (5.13),

which we now write as

* 1 * 1 *
re (pr + zp) - Telpr” + £ ¥7) _ 2ripi?icy d_

X Iwg-ci4 dr

!QL—]. (5.15)
xr

=
a.la.
o

We now use the following arguments: (i) as c¢j » 0, the derivative

of the term in parentheses on the left-hand-side of (5.15) is always
zero, except possibly at the point, r;, where wy = c;

(i1) the term inside the parentheses must be zero at the wall (r = 1),

and asymptote to zero at Infinfty {f the wave is subsonic; (ifi) the

right-hand-side acts as a delta function at r; as cj » 0, unless

d w0
5 [Taf] -0, (5.16)
r=ry
or equivalently
d YOnq
5 (o) - o 17
"
where 7 = (rij-1)/¢. (5.18)

(note x(r = ry) = Tg). This condition is clearly required in order

to avoid a finite jump in the term in parentheses on the left-hand-side

of (5.15), and the subsequent contradiction. Equation (5.16) is a



"doubly generalised inflexion condition™, and includes a curvature
term, not present in planar studies.

We thus see that (5.16) is a necessary and sufficlient condition for
the existence of so-called subsonic modes. In the following section
we carry out a numerical study of (4.16); as we shall see, (5.16) gives
us an extremely useful guide to the behaviour, nature, and existence of

the various modes of instabllity present.



6. Solution of disturbance equation
6 Numerica tho

For the purposes of numerical solution, equations (4.14) and (4.15)
were chosen (in preference to (4.16)). A fairly straightforward
Runge-Kutta scheme was applied to thls system, with the shooting
commencing at some suitably large value of n, with (4.19) and (4.20),
and the computation proceding inwards, towards #=0. The impermeability
condition at % = 0 was satisfied by choosing the appropriate value of
¢ (by means of Newton's method) .

In a number of computations it was found advantageous to divert
the computation below the real =n axis, in particular when iwg-c!
was small (if Im{c) ¢ 0 this procedure must be used). A similar
technique has been (used by Mack (1965), using a method based on that
of Zaat (1958).

6 Doubl eneralised xion po sults

Before presenting details for the eigenvalue problem per se, defined
in Section 4, we return briefly to consider further results for the basic
flow. It was shown in Section 5 how the so called doubly generalised
inflexion points are likely to play an important role in the stability
of the flow. Consequently we return to consider the two examples
studied in Section 2.2, namely My, = 2.8 and M, = 3.8. |In particular
we are interested In the existence of doubly generalise& inflexion
points.

Fig. 3a shows the axfal variation of position of the doubly
generalised Inflexion points for My = 2.8. The point { =0
corresponds to the leading edge of the cylinder, and as such
corresponds to the planar case (as a result of our basic assumptions).
There are two particularly striking features to this distribution:

(i) that these points occur in pairs and (ii) there exists a critical

value of ¢, downstream of which no such points exist. The upper




points are an extension of the generalised inflexion point found {mportant
in planar cases, whilst the lower points rise off the surface of the
cylinder n = 0, to ultimately merge with the upper branch at { = 0.059.
It is remarkable how the doubly generalised inflexion points
disappear at such a small distance downstream of the leading edge.

It was also shown i{n Section 5 how neutral solutions with

wavespeed

c = wo(ny), (6.1)
will occur, provided

1 - Yy <c <1+ 1y, (6.2)

and so in Fig. 3b we show the axfal distribution of wg(n;) for
M, - 2.8. Because of the restriction (6.2) it is seen that subsonic
inflexional modes of instability will only occur for 0¢¢ < 0.047,
implying that such modes will completely disappear at just a distance
approximately 0.0022 x Re body radil downstream of the leading edge
(although other modes types are certainly possible); consequently in
this case we expect this mode will disappear before the doubly
generalised inflexion points have merged. There are certain similarities
here with the effect of cooling of planar boundary layers (Lees 1947,
Mack 1987), which causes a similar effect on generalised inflexion points.
We next turn our attention to results for the higher Mach number
considered previously, M, = 3.8. Figure 3c shows the axial varfation
of the doubly generalised inflexion points in this case; the general
characteristics are the same as those of Fig. 3a, except the range of
t for which such points exist is increased. The corresponding

distribution of wg(n;) 1{is shown in Fig. 3d; this too is similar to



the corresponding M, = 2.8 distribution shown In Fig. 3b. In the case
of M, = 3.8, Flg.’3d indicates that neutral subsonic inflexional modes
will disappear a distance approximately 0.013xRe body radii downstream of
the leading edge.

Guided by the above observations, we now turn our attention to the

eigenvalue problem for the two cases M, = 2.8 and M, - 3.8,

6,3 Growth rate results

Figure 4a shows the varfation of ¢y with o (where ¢ = ¢, + 1 ¢y),
for the case M, = 2.8, at | = 0 (and hence corresponds to a planar
example). The corresponding results for ¢, are shown in Fig. 4b. Here,
and in all results to follow, neutral points are denoted by a cross.
These results (which are typical of previous planar results - see for
example Mack 1987) show two distinct unstable modes. The first (to be
referred to as mode 1) originates as a sonic neutral disturbance (with
cy =0, cp =1 - I/Mw) at a = 0, and terminates as a neutral inflexional
subsonic mode at o = 0.1, where cp = w(n = ny) = 0.66; this mode in
fact continues, becoming a decaying mode, with «c¢j < 0, although we
shall mainly concentrate our attention on growing/neutral modes).

The second mode (to be referred to as mode 1I) originates at
a = 0.4 as a subsonic neutral mode with ¢y = 0, ¢, = 1 (this may
be regarded as a special case of an Inflexional mode, with the
generalised inflexion point occuring in the freestream). This
mode then terminates at o = 1.13 as a (second) neutral subsonic
inflexfonal instability (and at values of o greater than this
value continues as a decaying mode, with c; < 0).

Although other modes of Instability undoubtedly exist at this Mach
number, these have considerably smaller growth rates than modes 1 and

11 shown here, and are subsequently much less important from a practical



point of view. Note that since the (temporal) growth rate iIs ocy,
mode Il {s the most Important.

We now turn to results incorporating the effects of curvature.

Fig. 4c and Fig. 4d show distributions of ¢, and c; (respectively),
with a (for M, = 2.8), at { = 0.02. Although the qualitative
features resemble those of the { = 0 case, the maximum amplitude of
the growth rates is seen to be considerably reduced (in spite of the
smallness of (), particularly that of mode 1I.

Moving further down the axis of the cylinder, to ¢ = 0.04, Figs.
4e (cy distribution) and 4f (c, distribution) indicate that mode 1 has
practically disappeared, whilst the maximum amplitude of mode Il is now
significantly diminished, terminating (at a subsonic inflexional neutral
point) at quite a large value of o (= 2.65), although over much of
the range of «, this mode has exceedingly small growth rates.

Following our comments in the previous subsection regarding wqp(n;)
dropping below l-l/Mm, we expect mode 1 to completely disappear at
{ = 0.047 for this choice of M,. As a consequence, the next set of
results (at { = 0.05) presented in Fig. 4g (cy) and Fig. 4h (c,) shows
Just mode 11, which itself exhibits a further reduction in growth rate.
This mode still originates as a neutral mode with ¢, = 1 (at o =.45);
unfortunately our computations did not indicate a clear neutral
solution at an upper value of oa. This was due to the exceedingly small
growth rates encountered, which were typically 0(10-10),  and hence
were comparable with the round-off associated with the computation. (In
the regime of larger o and very small growth rates, it was
found to be most essential to deform the integration contour in the

numerical scheme, as described in Section (6.1), {n order to maintain



—

numerical accuracy.) If a neutral point exists, as seems likely, {t must
be of the neutral gupersonic class (¢y =0, cp <1 - I/Mw) because of
the absence of any doubly generalised inflexion points at this value
of .

As a final example of the M, = 2.8 flow, we show results for
§{ = 0.2 in Figs. 41 (cy) and 4) (cp). These indicate qualitative
similarity with the previous set of results; however the maximum growth
rate is reduced by approximately an order of magnitude. Again,
unfortunately, positive identification of an upper neutral point was
not possible, due to the difficulties with tiny growth rates

encountered at larger values of o. We conclude, however , that

~curvature has important (and profound) effects: (i) annihilation of mode 1

and (ii) substantial reduction of the growth rate of mode Il (although
the range of o over which this unstable mode exists {s increased
quite significantly).

We next turn our attention to results for M, = 3.8, and Figs. 5a
and 5b show ¢y and c¢, distributions (respectively) with «a, for
the particular case {=0. This corresponds to the planar case as
computed previously (Mack 1987 for example) and thus provides a
useful check on the accuracy of the present overall scheme, (which
is seen to be entirely satisfactory). When compared with the
corresponding M, = 2.8 results (Figs. 4a, 4b), the importance of
mode Il is seen to be significantly increased (although the growth
rate of mode | is increased also). GCenerally, the M, - 3.8
distributions qualitively resemble the corresponding M, - 2.8
distributions.

At ¢ = 0.05 (with M, = 3.8), we see in Figs. 5¢ (cj distribution)
and 5d (c, distribution) there is an approximate halving of the

maximum growth rate, when compared with the (=0 results. Further



downstream, at { = 0.10 (Figs. Se, 5f) mode [ has almost
disappeared, whilst mode Il has suffered a further depletion of
maximum growth rate.

From our observations made fn Section (6.2), we expect that mode I
will completely disappear at ¢ = 0.013 (where c, = wg(n = n4) -

1 - l/Mm); this will also be an important location for the upper
neutral point of mode Il, which for { ¢ 0.013 {s of the subsonic
inflexional kind. As noted earlter, for the previous M, considered,
growth rates in this regime were extremely small, and so no firm
conclusions on the behaviour of this mode in this region were possible.
Fortunately, although the growth rates in this critical region at

M, = 3.8 are small, they are nonetheless significantly larger than

at the lower Mach number.

Figure 5g shows the local variation of ¢y with o at < = 0.112
(just below the critfcal value). Mode Il is clearly seen to become a
damped mode at o = 0.85, with IcjI reaching a maximum at o = 0.93,
and then decreases. Unfortunately, no firm conclusions are
possible regarding the ultimate behaviour of c¢; at large
values of o, due to the smallness of cyt.

Figure 5h shows the distribution of c¢; 1in the same critical
region of o, at ¢ = 0.114 (slightly above the critical value of
£). It now appears that the growing mode Il now terminates at

a = 0.94, as a supersonic neutral mode, and does not continue as a

damped mode. Instead, a further (supersonic) neutral mode has already
appeared (at o = 0.88) and this is then the origin of a damped mode,
which has a maximum value of (cyt at a = 0.95; 1icyt then decreases,
towards zero, and again because of its ultimate smallness, no

conclusions regarding its behaviour at largér values of o are possible.



Additionally, there was some evidence of another unstable mode,
beginning around a = 1.52, but because of {ts very small growth rate
it is not possible to be compietely categorical about this; its
growth rate was also too small to be seen on the scale of Fig. 5h.
Thus in this case we see the presence of possibly three (supersonic)
neutral points In this regime.

Figure 51 detajls the variation of c¢; 1in the crucial o region,
for the location § = 0.116. Again, (growing) mode Il is seen to
terminate at a supersonic neutral point, this time located at o = 1.
A further supersonic neutral point exists, originating at o = 0.9
which then provides the start for a decaying mode; when compared to the
corresponding ¢ = 0.114 mode, the decay rate of this particular mode
is seen to be reduced. Further, this mode now seems to terminate
at another neutral point (at o = 1.48). Yet another neutral point
exists at o = 1.40, which then provides the start of a second
unstable mode (although the growth rate of this mode was so small to
be bearly visible on Fig. 5i); a total of four supersonic neutral
points are thus observed in this region of «.

Figure 5j shows the c¢; distribution at ¢ = 0.118 in the same
general region of «a. When compared with the previous results, a
further change to the qualitative picture is seen. Here, the original
mode 11 has merged with the second unstable mode. Just two neutral
points remain in this region, at o = 0.93 and o = 1.35, which are
associated with the start and the terminus of the decaying mode (which
generally has a significantly reduced 1cjy1 compared to the
previous results). The ultimate behaviour of the growing mode with
o remains unclear, due to the smallness of {cji.

It is interesting to note that when two modes were present (for a
given value of o), both modes had values of ¢, that were

practically indistinguishable. Further, there was no difficulty in



calculating accurate values of c¢,, even at large values of o.

Moving further downstream to ¢ = 0.2, the decaying mode has
disappeared completely, and c; and c, distributions over a broad
range of o are shown in Figs. 5k and 50 respectively. When compared
with the Fig. 5e results, the mode Il growth rates are quite
appreciably reduced; the ultimate behaviour of 1cj1 at large values
of o remains unclear.

Further downstream still, at § = 1.0, results (¢y shown in
Fig. 5m, ¢, shown in Fig. 5n) are qualitively similar to those at
{ = 0.2, except that the maximum value of c; {is significantly
diminfshed, and occurs at a rather larger value of o (as does the
origin of this mode which occurs at o = 0.72, compared with o = 0.4
in the case of I = 0.2). The larger o behaviour of this mode
is again unclear, due to the reasons described above.

In the following section we turn to consider a number of general

conclusions and points raised by this work.



onc jon

In this paper the supersonic flow over a thin straight circular
cylinder has been {nvestigated. The basic boundary layer flow has
been obtained, and the inviscid stability of the flow has been
studied. A céndition on the basic flow for the existence of so called
subsonic Inflexional neutral modes of instability has been derived,
and is found to be an extension of the generalised inflexional
condition relevant to planar flows.

The effect of body surface curvature {s seen to immediately (and
significantly) reduce the importance of the "first mode" of inviscid
instability, which Is seen to completely disappear at what could be
a comparatively short distance down the axis of the cylinder (by
about 0.0022 x Re body radif at M, = 2.8, and by about 0.013xRe
body radiif at M, - 3.8).

The maximum growth rate of the "second mode" of finviscid
instability also suffers a substantial reduction at locations
increasingly further down the axis of the cylinder, although the
evidence is that it does not disappear completely.

There are certain similarities here with the effect of cooling
a planar boundary layer (Mack 1984, 1987, for exmaple), which can also
cause the first mode to disappear completely (cooling also causes the
formation of a second generalised inflexion point, which with a
progressive reduction in wall temperature eventually coalesces
with the first generalised inflexion point). However the effect of
cooling is to increase the amplification rate of the second mode (in
contrast to our results featuring curvature).

It is particularly interesting to note that although inviscid
modes of instability are generally regarded as more important/

unstable than viscous modes of finstability in the case of supersonic



planar flows, the work of Duck and Hall (1988a,b) on viscous
axisymmetric flows indicates that a reduction in body radius
(equivalent to a further downstream location in our context)

causes an increase in amplification rate. Thus it is entirely
possible that with axisymmetric flows, regimes may exist where viscous
instability is dominant.

It is to be hoped that this study will provide a basis for the
study of flows over further and more practical geometries, such as
cones. One important omission to the physics of that problem, which
must ultimately be resolved, is the exclusion of any shock waves in
the basic flow (however this may be justified by the restriction of
thinness), although previous works on planar flows (cited throughout
this paper) all have this same omission. It {s also
hoped that these results will provide material for comparison with

finite Reynolds number computations.
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Fig 5a Variation of c¢j; with a,

M, - 3.8,

§{ = 0 (planar case)
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